Glutaminase: A Hot Spot For Regulation Of Cancer Cell Metabolism?

نویسندگان

  • Jon W. Erickson
  • Richard A. Cerione
چکیده

Cancer cells re-program their metabolic machinery in order to satisfy their bioenergetic and biosynthetic requirements. A critical aspect of the re-programming of cancer cell metabolism involves changes in the glycolytic pathway (referred to as the "Warburg effect"). As an outcome of these changes, much of the pyruvate generated via the glycolytic pathway is converted to lactic acid, rather than being used to produce acetyl-CoA and ultimately, the citrate which enters the citric acid cycle. In order to compensate for these changes and to help maintain a functioning citric acid cycle, cancer cells often rely on elevated glutamine metabolism. Recently, we have found that this is achieved through a marked elevation of glutaminase activity in cancer cells. Here we further consider these findings and the possible mechanisms by which this important metabolic activity is regulated.

منابع مشابه

Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation.

One hallmark of cancer cells is their adaptation to rely upon an altered metabolic scheme that includes changes in the glycolytic pathway, known as the Warburg effect, and elevated glutamine metabolism. Glutaminase, a mitochondrial enzyme, plays a key role in the metabolism of glutamine in cancer cells, and its inhibition could significantly impact malignant transformation. The small molecule 9...

متن کامل

Therapeutic Discovery Dibenzophenanthridines as Inhibitors of Glutaminase C and Cancer Cell Proliferation

One hallmark of cancer cells is their adaptation to rely upon an altered metabolic scheme that includes changes in the glycolytic pathway, known as the Warburg effect, and elevated glutamine metabolism. Glutaminase, a mitochondrial enzyme, plays a key role in the metabolism of glutamine in cancer cells, and its inhibition could significantly impact malignant transformation. The small molecule 9...

متن کامل

c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism

Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes g...

متن کامل

Sequence dependent hypermutation of the immunoglobulin heavy chain in cultured B cells.

The variable (V) regions of immunoglobulin heavy and light chains undergo high rates of somatic mutation during the immune response. Although point mutations accumulate throughout the V regions and their immediate flanking sequences, analysis of large numbers of mutations that have arisen in vivo reveal that the triplet AGC appears to be most susceptible to mutation. We have stably transfected ...

متن کامل

In Silico Analysis of Glutaminase from Different Species of Escherichia and Bacillus

Background: Glutaminase (EC 3.5.1.2) catalyzes the hydrolytic degradation of L-glutamine to L-glutamic acid and has been introduced for cancer therapy in recent years. The present study was an in silico analysis of glutaminase to further elucidate its structure and physicochemical properties.Methods: Forty glutaminase protein sequences from different species of Escherichia and Bacillus obtained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010